Simcenter FLOEFD What's New in 2306

Unrestricted | © Siemens 2023 | 2023-06-16 | Siemens Digital Industries Software

Model the complexity Ensuring decision confidence

Explore the possibilities Enabling insights

Go faster Achieving speed and agility

Stay integrated Connecting all activities Stay integrates dependent of the start integrates dependent of the start integration of the start integration of the start integrates dependent of the start integrates dependen

fluids

New Features in Simcenter FLOEFD 2306

Model the complexity

- Electronics Thermal Analysis
 - IGBT compact model
 - BCI-ROM update
 - Component Explorer Export and import thermal list
- Electronics Multiphysics
 - Simcenter 3D NASTRAN non-linear solver connection
 - Structural Large displacement option (available for Simcenter 3D NASTRAN non-linear solver only)
 - Structural Tolerance based contacts
 - Structural User defined maximum aspect ratio in local mesh
 - Structural Goals for frequency analysis

Explore the possibilities

• EFDAPI - Improve API and automation (new API available as a BETA feature)

Go faster

- Mesher speed increase
- EDA Bridge import and Smart PCB generation speed increase

Stay integrated

- Simcenter 3D Access Simcenter FLOEFD SC via SC3D value based licensing (tokens)
- Teamcenter FLOEFD item customization
- FMU Run on Linux
- Licensing Upgraded to use Siemens Advanced Licensing Technology 2.2.0.0 (SALT)

eneral Settings		Da	3 A
Physical Features	Value		Navigator
Fluid Flow			S. Analysis home
Conduction			2901 CHIRDRAID DAVE
Structural			Solida
Analysis type	Nonlinear	~	etuta
Electromagnetics	0		Initial and embient conditions
Gravity			

Model the complexity Electronics – Thermal Analysis

IGBT compact model

<u>Challenge:</u> Predict junction temperature of an electrical element with a heat source determined by a non-linear Current–Voltage characteristic:

- Thermal model 2R component
- Heat source electrical power
- Current–Voltage characteristic series of nonlinear curves for different temperature values

<u>Solution:</u> IGBT compact model as a composition of Electrical Element and 2R component compact models

Input:

R

R junction to bottom

junction to top

Voltage or Current

Output:

Junction Temperature

Convenient implementation of electronic component

IGBT compact model: how it works

- Junction temperature is used for Electrical Power determination from I-V chart •
- Resulting Electrical Power is applied to the model through the 2R component ٠

Video: IGBT compact model

Reference temperature for BCI-ROM extraction

<u>Challenge:</u> Prior BCI-ROM does not allow the use of materials with temperature dependent properties, so customer needs to substitute all dependencies with constant values. This procedure can be time consuming

Solution:

Use reference temperature to obtain constant values from dependencies automatically for all materials

Update to the latest BCI-ROM version

Simplify project definition for BCI-ROM extraction

Component Explorer Export and import of a component list

<u>Challenge:</u> Manage large volume of component materials and properties through Excel spreadsheet

<u>Solution:</u> Ability to export and import a component list from the Component Explorer dialog

- Component materials
- Heat source and 2R power
- LED current

Convenient management of component attributes

🐿 Apply 🧐 Scan 🔳 🧏 🥞 🕼 Columns 🗸 👯 🖏 🗉	אן מי 🗓 💭 א ווי		(2) ⊗
Components	Materials	Volume Sources	Two-Re:
🗏 🍓 _Beaglebone	/ Aluminum [De	fa 1 W (Total)	1.4 W (To
📦 RJ45_17PINS_2LED_Con-1	Epoxy Resin		
DC_PWR_JCK-1	Epoxy Resin		
	Aluminum [Defau	lt]	
	Aluminum [Defau	lt]	
🗊 HEADER_23x2-1	Epoxy Resin		
🗊 HEADER_23x2-2	Epoxy Resin		
🖤 饲 CONN19_HDMI-1	Aluminum [Defau	lt]	
🖙 🗊 beaglebonev8-1		1 W (Total)	1.4 W (To
🥌 🞯 Board_beaglebonev8(0)	Insulator [Default]		
U2_U_48_RSL_TYPE_0029(1)	Insulator [Default		0.8 W

SIEMENS

: Component Explorer

Component Explorer Export and import of a component list

🕲 Apply 🧐 Scan 🔳 🕽 🖧 📲 🐮 Columns 🗸	🏭 🏪 🕂 🗶 🛅 💭 🕼 🏷 📑 🔂	2 🛛 🗙	Componer	ot proportio	a con ho
Components	Materials Volume	Sources Two-Re:	Componer	it propertie	s can be
🗏 😽 _Beaglebone	/ Aluminum [Defa 1 W (To	tal) 1.4 W (Te	spreadshe	et then edit	ed and imr
RJ45_17PINS_2LED_Con-1	Epoxy Resin		opreduorie		
DC_PWR_JCK-1	Epoxy Resin		the compo	onents in th	ne exported
🖽 🗊 usb connector-1	Aluminum [Default]				
	Aluminum [Default]		designer's	hierarchy.	Properties :
	Epoxy Resin		5	<i>J</i>	•
	Epoxy Resin		 Compon 	ent Materia	
	Aluminum [Default]		•		
	1 W (To	tal) <u>1</u> .4 W (To	 Volume s 	source valu	е
Board_beaglebonev8(0)	Insulator [
12 U2 U 48 RSL TYPE 0029(1)	Insulator I	0.8 W	 2R (insta 	ance from th	ne librarv ar
1.0	A		B C		T D is c
2 Beagl	ebone		1 W (Total)	1 4 W (Total)	ments Two-Resistor Components
3 RJ45_1	7PINS_2LED_Con-1				
4 DC_PW	/R_JCK-1	Epo			
5 HEADE	R_23x2-1	Epoxy			
6 HEADE	R_23x2-2	Epoxy Res.		4 A M (7 A)	
/ beagle	00nev8-1	 Inculator [Dof:	1 W (Total)	1.4 W (Total)	
9 beagle	onev8-1/U4_SO8-25X75_TYPE_0026(2)	Typical Plas	ackages]	0.8 W	O2 [Oser Defined (beagies
10 beagle	ponev8-1/U5_AM33XX_15X15_TYPE_0032(3)	Typical P	ackages] 1 W		
11 beagle	oonev8-1/U6_SOP8_DCT_TYPE_0025(4)	Typical Plastic Package [F	Pre-Defined\IC Packages]		
12 beagle	oonev8-1/U8_DGN-16X60_TYPE_0002(5)	Typical Plastic Package [P	Pre-Defined\IC Packages]		
13 beagle	oonev8-1/U11_QFN64S9X9P5_TYPE_0024(6)	Insulator [Default]		0.3 W	U11 [User Defined\beagle
14 beagle	ponev8-1/U12_BGA96_T9_P8_9X14_TYPE_0001(7)	Typical Plastic Package [P	Pre-Defined\IC Packages		
15 beagle	00nev8-1/U13_BGA153_P14_P5_11P5X13_TYPE_00	2(8) Typical Plastic Package [F 28(9) Insulator [Default]	re-Defined (IC Packages]	0.3 W	14 [ser Defined\booglo
17 beagle	ponev8-1/Y1 XTAL4 126-216SMD TYPE 0013(10)	Typical Plastic Package [P	Pre-Defined\IC Packages]	0.5 W	014 [Oser Denned (Deagle

s can be exported into an Excel ed and imported back. The order of ne exported list follows the original Properties available for editing:

U2 [User Defined\beaglebonev8.prt\beaglebonev8]

U11 [User Defined\beaglebonev8.prt\beaglebonev8]

U14 [User Defined\beaglebonev8.prt\beaglebonev8]

- Э
- e library and power)
- the library and current)

G

LEDs

Model the complexity Electronics – Multiphysics

SC3D NASTRAN non-linear solver connection

<u>Challenge:</u> Many structural analysis applications of interest in electronics require non-linear solver capabilities

<u>Solution:</u> Connect Simcenter FLOEFD with Simcenter 3D Nastran solver to access its non-linear functionality

- Leverage existing solutions in Simcenter portfolio
- Initial step to exploring further application areas
- SC3D Nastran solver 401 is used for Nonlinear analysis
- SC3D Nastran should be installed and licensed independently

Expand range of structural analysis applications

SIEMENS

Video:SC3D NASTRAN non-linear solver connection

NX 圖 NX - FLOEPD Simulation	SIEMENS _ 🗗 🗙
File Analysis Application Curve Developer Render Selection Tools View Assemblies Flow Analysis	<i>₽</i> ::^@!
Witzard Image: Construction of the section of the sectin of the secting of the section of the section of the s	
Assembly Navigator Image: Search of the search o	►
Image: Constraint American Straint American	
 Preview Dependencies 	
	403 1 Notification

SC3D NASTRAN non-linear solver connection

Connection with the Simcenter 3D Nastran solver opens its nonlinear capabilities to users from their familiar Simcenter FLOEFD interface:

- Set up project, run solver and process results as usual.
- SC3D Nastran solves Smart PCB with all nets for both levels of detail (fine and homogenized).
- Easier design space exploration by working with one model

Structural: Large displacement

<u>Challenge:</u> Take into account structural non-linear behavior due to large displacement of geometry

<u>Solution:</u> Use Simcenter Nastran non-linear capabilities of iterative solver 401

Analyze cases with large displacement

Calculation Control Options			?	×
Finishing Refinement Solving Saving		F		
Parameter	Value		OK	
			Cano	el
Additional Parameters				
			Help	o
E Flow Freezing		- 1-		
		_		
Jacobian filter	[auto]	_		
Scratch directory		_		
Scratch memory				
Contact region mesh refinement	New algorithm	\sim		
Number of steps	10			
End time	1 s			
Large displacements				
			Rese	t

Video: Structural - Large displacement

Structural: Tolerance based contacts

<u>Challenge:</u> Create contacts on surfaces of overlapping bodies or bodies with the gaps between them in preparation for structural analysis.

<u>Solution:</u> Tolerance based contacts: ability to specify tolerances and use them to create contacts between bodies with gaps

- Linear and angle tolerances for contacts
- Glue contact between bodies with gap

Improved options for contact definition

Structural: Tolerance based contacts

Example of a tolerance-based contact with non-ideal geometry of a ball joint with overlapping areas and regions with gaps

SIEMENS

Video: Structural: Tolerance based contacts

Structural: User defined maximum aspect ratio in local mesh

<u>Challenge:</u> Create HEX dominant mesh for thin plates with high aspect ratio value, beyond the limitation of 1:4

<u>Solution:</u> Allow user to specify maximum aspect ratio for particular components in the Structural mesh settings dialog

Video: Structural - User defined maximum aspect ratio in local mesh

Structural: Goals for frequency analysis

<u>Challenge:</u> Obtain eigenvalues of a frequency analysis as a goal function of a calculation, be able to conduct parametric study or optimization

Solution: add goals for frequencies

Modal frequency parametrization with frequency values as goal functions

Video: Structural - Goals for frequency analysis

Explore the possibilities

For customers only where containing Beta Features

EFDAPI: Improve API and automation (new API available as a BETA feature)

<u>Challenge:</u> Existing API does not cover all FLOEFD functionality and requires significant effort to support and to add access to new FLOEFD features

Solution:

- Provide new automatically generated EFDAPI to cover all FLOEFD features.
- The existing API will be maintained, but will not be enhanced further

Access to all existing FLOEFD features Easy maintenance

Dim ProgID As String	Set Doc = App.GetActiveDoc()		
Dim SRV As Object	Set Project = Doc.GetActiveProject()		
Dim App As Object	Set Features = Project.GetFeatures()		
Dim Doc As IDocument	Set Feature = Features.GetFeatureByName1("Feature 1")		
Dim Project As IProject	Set Parameter = Feature.GetParameter(efdHeatGenerationRate)		
Dim Features As IProjectFeatures	Parameter.SetDependenceType efdTimeTable		
Dim Feature As Object			
Dim Parameter As IExcelParam	\times (0) = 0		
Dim Item As Object	Y(0) = 100		
Dim X(2) As Double	X(1) = 10		
Dim Y(2) As Double	Y(1) = 50		
	X(2) = 20		
ProgID = "EFDApiSrv.EFDLauncher.0.2306"	Y(2) = 100		
Set SRV = CreateObject(ProgID)			
Set App = SRV.Attach2RunningCADInstance(PID)	Parameter.SetTable X, Y, Array(1, 1), Array(0, 0)		

SIEMENS

EFDAPI example: apply time table for many features automatically

Example created to address an actual customer request:

- Xml file with the description of time dependent conditions (HTC, Surface and Volume • Sources) is generated by third party software
- Script reads the file and applies time tables to the opened project ٠

Beta

Go faster

Smart Cell Cartesian mesh generator speed-up and optimization

<u>Challenge:</u> Accelerate mesh generation time and reduce resulting mesh file size

Solution: Smart Cell Cartesian mesh generator optimization

- Scalability improvement:
 - 9-12x speedup on 32 cores for 10-20M cell model in 2306 compared to 3-7x in 2205

 Meshing speed is ~2-3x faster on 32 cores in 2306 due to scalability

Faster meshing, reduced resources

Mesh generation scalability

Unrestricted | © Siemens 2023 | 2023-06-16 | Siemens Digital Industries Software

Cartesian mesh generator speed-up and optimization

SIEMENS

EDA Bridge import and Smart PCB generation speed increase

<u>Challenge:</u> Decrease Smart PCB import time, speed-up other manipulations to the Smart PCB

<u>Solution:</u> Smart PCB mesh generation speed-up, optimization

Accelerated operations:

- Import and Smart PCB mesh generation
- Visualization
- Update after parameters changed

Stay integrated

Stay integrated

Simcenter FLOEFD SC

Access Simcenter FLOEFD from Simcenter 3D Desktop

- Incorporate FLOEFD into main Simcenter multidisciplinary CAE platform
- Uses CLT licensing (and SALT...)
- Flexible licensing through SC3D tokens

Simcenter FLOEFD SC Electronics

• Simple licensing option providing all electronicsrelated functionality, including structural and EMAG

Simcenter FLOEFD SC Lighting

Continued focus on core strength

Simcenter FLOEFD SC

SIEMENS

Teamcenter FLOEFD item customization

Challenge: Customize Simcenter FLOEFD data model

<u>Solution:</u> Put Simcenter FLOEFD data model into an *.xml file and store it locally or in Teamcenter

Added flexibility in maintaining digital thread

E TC_EFE	D_DataModeLxml 🗵	
1	<pre><?xml version="1.0" encoding="utf-8"?></pre>	
2	<pre>EFDProject version="1.0" ></pre>	
3	<item type="CAEAnalysis"></item>	
4	<revision type="CAEAnalysisRevision"></revision>	
5	<masterform type="CAEAnalysis Master"></masterform>	
6	<masterformrevision type="CAEAnalysisRevision Master"></masterformrevision>	
7	<masterformrevisiondata name="user_data_1"></masterformrevisiondata>	
8	<modelrelation type="TC_CAE_Target"></modelrelation>	
9	<datasetrelation type="IMAN_specification"></datasetrelation>	
10	<pre> <datasets></datasets></pre>	
11	<reports <="" th="" type="CAEResults"><th></th></reports>	
12	name="Reports"	
13	description="FLOEFD images and reports"	
14	tool="CAE_Dummy"	
15	reference="Result"/>	
16	<solver <="" th="" type="CAEResults"><th></th></solver>	
17	name="Solver"	
18	description="FLOEFD solver files"	
19	tool="CAE_Dummy"	
20	reference="Result"/>	
21	<results <="" th="" type="CAEResults"><th></th></results>	
22	name="Results"	
23	description="FLOEFD solver files"	
24	tool="CAE_Dummy"	
25	reierence="Result"/>	
20	<averagingdata <="" th="" type="CAEResults"><th></th></averagingdata>	
27	name="Averaging"	
28	description="FLOEFD averaging"	
29		
21	<pre>/TransientData_type="CAPPerguite"/></pre>	
32	name="Transient"	
33	description="FLOEFD transient evplorer"	
34	tool="CAE Dummy"	
35	reference="Result"/>	
36	<worddoc <="" th="" type="MSWord"><th></th></worddoc>	
37	name=""	
38	description="FLOEFD images and reports"	
39	tool="MSWord"	
40	reference="word"/>	
41	<worddocx <="" th="" type="MSWordX"><th></th></worddocx>	
42	name=""	

FMU: Run on Linux

Challenge: Ability to use FLOEFD FMU on Linux systems

Solution: Store all necessary information including model geometry inside FMU exported from Simcenter FLOEFD to make it available for usage on Linux. Enhance Simcenter FLOEFD Linux solver to co-simulate with the FMU exported from other software

Parameters	Values	Run Options	
Temperature (Inlet Mass Flow 1) (K)	to_floefd_1 [Driven]	Mesh	
Mass flow rate (Inlet Mass Flow 1) (kg/s)	to_floefd_2 [Driven]	Run at	This computer
Temperature of external fluid (Wall Conditions)	to_floefd_3 [Driven]	Core(s)	[use all]
Heat transfer coefficient (Wall Conditions) (W/m	to_floefd_4 [Driven]	Add model to fmu	
Environment pressure (Environment Pressure 2) (to_floefd_5 [Driven]		-
Heat generation rate (VS Heat Generation Rate	to_floefd_6 [Driven]		
Wall temperature (Outer Wall 3) (K)	to_floefd_7 [Driven]		
from_floefd_1 [Driven]	SG Inlet Mass Flow 1 Static Press		
from_floefd_2 [Driven]	SG Environment Pressure 2 Tem		
from_floefd_3 [Driven]	SG Average Temperature (Solid)		
from_floefd_4 [Driven]	Mout (kg/s)		
from_floefd_5 [Driven]	VG VS Heat Generation Rate 1 T		
from_floefd_6 [Driven]	SG Outer Wall 3 Heat Transfer R		

Expand platform options for FMU usage

SALT Licensing

<u>Challenge:</u> Consolidate different legacy license systems to simplify and enhance licensing for our customer within all Siemens products.

Solution: FLOEFD now supports the Siemens License Server (2.2.0.0)

- Siemens Common Vendor Daemon, saltd, is used in place of legacy license servers
- Customers can use their existing licenses when upgrading to SLS.
- License Manager upgrade is required for 2306.
- License server installation no longer included in installation kit, now downloaded from Support Center
- Legacy license server will be automatically uninstalled during SLS installation

