

CFD Heat Exchanger Simulation with porous media as surrogate material Mike Croegaert

Mentor Graphics

Content

- Introduction
 - Examples in nature; Types of HX;
- CFD for Heat Exchangers
 - Why & How
- Example
 - Porous media characterization; Results etc.
- Downstream Use
 - Stress Analysis;
 - System CFD
- Summary

Introduction: An Example from Nature

Introduction: Types of Heat Exchanger

Introduction

- Key Industry sectors
 - Automotive
 - Aerospace
 - Process Industries
 - Electronics
 - Power Electronics

The 2014 F1 car - keeping it cool - The Racer's Edge 41 Part 5 https://www.youtube.com/watch?v=gmWp1jPhbu4

Introduction

- Reliable dimensioning programs are available, e.g.
 - HTRI (<u>www.htri.net/</u>)
 - Lauterbach Verfahrenstechnik (<u>www.lv-soft.de/</u>)
- Good for standard designs, especially in the process industries.
- Allows alternatives to be evaluated
- Designs put out to competitive tender.

- Analysis of flow distribution problems
- Detailed analysis of specific areas (e.g. flow distributors, plenum chamber)
- Evaluation of operating points that differ greatly from the designed for conditions
- Transient considerations
- Calculations with boundary conditions that lie (far) beyond range of the empirical correlations
- Special designs for which no empiric dimensioning programs exist
- Evaluating pressure and temperatur distributions for stress analysis (FEA)

- Near infinite choice of design detail; presumably only one optimum for a given application & duty, hence:
- Need for optimization where performance vs. volume or weight is critical, .e.g. motorsport
- Early assessment in the design process is needed
- Frontloading of CFD within the design process:
- CFD is performed within the CAD environment, upstream of the CAE department

• Option 1:

- Model geometry directly
- Possible with SmartCells & "Engineering" models:

• Option 2:

- Use a porosity approach for the finned region:

2016 NAFEMS Americas Conference

June 7th-9th | Seattle, WA

Example: Context

• Study focuses on Option 2 for this example:

Example: Fin Geometries

Example: Meshing

- Meshing directly:
 - Version 00; ~36M
 mesh cells (more control volumes)

ITA MARANA M

- Mass
- Volume
- Surface Area, etc.

Band_01-3@Assem1		options
Override Mass Properties	Recalculate	
Include hidden bodies/components		
Create Center of Mass feature		
Show weld bead mass		
Report coordinate values relative to	: defaul <mark>t</mark>	Ť
Aass properties of selected components Coordinate system: default		*
The center of mass and the moments of in Includes the mass properties of one or n	nertia are output in the coordinate system	m o
	nore maden components/boules.	
/lass = 0.00273884 kilograms	nore madeir components, poules.	III
vlass = 0.00273884 kilograms /olume = 0.00000274 cubic meters		III
vlass = 0.00273884 kilograms /olume = 0.00000274 cubic meters iurface area = 0.01938412 square meters		III
vlass = 0.00273884 kilograms /olume = 0.00000274 cubic meters iurface area = 0.01938412 square meters :enter of mass: (meters) X = 0.00250000		Η
Vlass = 0.00273884 kilograms /olume = 0.00000274 cubic meters iurface area = 0.01938412 square meters :enter of mass: (meters) X = 0.00250000 Y = 0.00503651 Z = -0.07605453		II
Vlass = 0.00273884 kilograms /olume = 0.00000274 cubic meters Surface area = 0.01938412 square meters Tenter of mass: (meters) X = 0.00250000 Y = 0.00503651 Z = -0.07605453 Principal axes of inertia and principal mom Taken at the center of mass. x = (-0.00002775, 0.00001041, 1.000)	nents of inertia: (kilograms * square me 200000) Px = 0.0000007	ters

X

Example: Porous Media

- Isotropic:
 - permeability is independent of direction within the medium
- Unidirectional:
 - The medium is permeable in one direction only:
- Orthotropic:
 - Permeability different in each direction
- Anisotropic:
 - Permeability varies throughout medium

nafems.org/americas

Wall temperature:

20 °C

Example: Characterization

Static Pressure 101325 Pa

> Real Wall 20 °C

Example: Characterization

- Parametric study:
 - Mass Flow Rate (m)
 - Pressure drop (ΔP)
 - Av. Solid Temp. (Ts)
 - Enthalpy Difference (ΔQ)
- Usually select to run on different computers on the network; or
- One run per core on a single machine
- Localization for different languages – needed for Frontloading, .e.g.
 - French, German, Japanese,
 - Russian and Chinese.

🖽 假设分析 🔻 🧭 🛃 🛛 🖬 dp_HT_z_v	00_160302_03							
🎒 输入变量 🔀 输出参数 🧱 方案 🎋	Goals							
▶ 运行 🔳 🛃 😽 👬 ← → 🗙 🕒 🖄 ▾								
摘要	设计点 1	设计点 2	设计点 3					
Velocity normal to face (Geschwindigkeit (Ein	1	1	0.5					
Temperature (Geschwindigkeit (Einlass) 1) [°C	70	100	70					
Inlet_Massenmittelw. Temperatur (Fluid) 1 [°C	70	100	70					
Outlet_Massenmittelw. Temperatur (Fluid) 1 [*	23.8955777	25.1164517	20.77822					
IN por Bulk Av Temperature (Fluid) 1 [°C]	62.7706181	87.6572584	59.9922683					
OUT por Bulk Av Temperature (Fluid) 1 [°C]	24.1860882	25.5255457	20.8751131					
dT_z [°C]	46.1044223	74.8835483	49.22178					
dQ_z [W]	7.17091127	10.7219486	3.82737241					
TLuft_m (°C)	46.9477888	62.5582258	45.38911					
dTm [°C]	26.9477888	42.5582258	25.38911					
alfa_z_m²[W/m^2/K]	49.2784988	46.6548135	27.9164047					
alfa_z_m3 [W/m^2/K]	9855.69975	9330.9627	5583.28095					
dP_por_z [Pa]	6.65733917	6.23833071	3.137383					
dT_por_z [°C]	38.58453	62.1317127	39.1171552					
TLuft_m_por_z [°C]	43.4783531	56.5914021	40.4336907					
dTm_por [°C]	23.4783531	36.5914021	20.4336907					
dQ_z_por [W]	7.03669071	10.0275165	3.52218853					
alfa_z_por_m2 [W/m^2/K]	65.7258235	60.0965523	37.8007939					
alfa_z_por_m3 [W/m^2/K]	13145.1647	12019.3105	7560.15879					
dp_z [Pa]	7.17462179	6.69505381	3.30425636					
状态	已完成	已完成	已完成					
运行位置:	本计算机	本计算机	本计算机					
线程数量	4	4	4					
重新计算								
采用之前的结果								
保存全部结果	V	V	V					
圣闲吃初碧	(m)	100	(m)					

Example: Characterization

• Volumetric Heat Exchange Coefficient α (W/m³K) and thermal conductivity of porous media λ (W/mK):

$$1 = \frac{mC_p}{\Delta Q} \left(T_w - T_{fluid}^{IN} \right) \left(1 - e^{-\beta A(\sqrt{\delta})} \right)$$

Where:

$$\beta = \frac{\alpha_{v}S_{1}L}{mC_{p}}, A(\sqrt{\delta}) = \frac{1}{\sqrt{\delta}}th(\sqrt{\delta}),$$

$$th(\sqrt{\delta}) = \frac{e^{\sqrt{\delta}} - e^{-\sqrt{\delta}}}{e^{\sqrt{\delta}} + e^{-\sqrt{\delta}}}, \delta = \frac{\alpha_{v}h^{2}}{\lambda_{k}}$$

• Calculation performed by a utility program

Example: Calibration

Example: Calibration

2016 NAFEMS Americas Conference

Example: Porous Media Definition

	Freadure unterence		_			
0.5 m/s	5.7 Pa	112.60 Pa	Pressure difference			
m/s	14.1 Pa			Items Item Properties Tables and Curves Formula		
m/s	38 Pa	94.78		Property	Value	
n/s	70.9 Pa			Name	160411_Ver 03_01_orthotrop	
n/s	112.6 Pa	76.97		Comments	Formula corrected	
				Porosity	0.8579	
		59.15		Permeability type	Orthotropic	
				Resistance calculation formula	Pressure Drop, Velocity, Dimensions	
		41.33		Pressure drop vs. velocity in X	(Table)	
				Pressure drop vs. velocity in Y	(Table)	
		23.52		Pressure drop vs. velocity in Z	(Table)	
				Length in X	0.05 m	
		5.70	1.67 2.83	4.00 Length in Y	0.05 m	
			1.08 2.25 3.42	Length in Z	0.152 m	
			Velocity	Use turbulent scale		
				Use calibration viscosity		
y:				Use calibration density		
z)	•			Heat conductivity of porous matrix		
-				Use effective density and capacity		
city (Z)	Heat exchange coefficient			Density of porous matrix	2689 kg/m^3	
/s	6192.5 W/m^3/K	6.2e+004 W/m^3/	K Heat exchange coefficient	Specific heat capacity of porous matrix	(Table)	
	15237.9 W/m^3/K			Conductivity type	Isotropic	
	32049.4 W/m^3/K	5.3e+004		Thermal conductivity	(Table)	
	47625.5 W/m^3/K			Melting temperature	933.4 K	
	61923 W/m^3/K	4.3e+004		Matrix and fluid heat exchange defined by	Volumetric heat exchange coefficient	
				Volumetric heat exchange coefficient type	Orthotropic	
		3.4e+004		Hv (Vx)	(Table)	
				Hv (Vy)	(Table)	
		2.5e+004		Hv (Vz)	(Table)	
				(Tarana)	101- 0 5-3360 - 0 5-3360 - 0 5-3360 - 0 5-3360 F	

Example: Overall Results

• Air outlet temperature for several volume flow rates

2016 NAFEMS Americas Conference

Downstream: Stress Analysis

- Export Porous Matrix Temperature (vs. time) e.g. for ANSYS
- Or calculate directly in CAD suite (e.g. PTC Creo

Downstream: System CFD

- Integrated 1D-3D Native Solution:
 - Import of FIoEFD models into Flowmaster
 - Transient performance (drive cycle)

Summary

- Frontloading for early design evaluation
 - Made possible by embedding CFD into CAD:
 - FIOEFD for Siemens NX
 - FIoEFD for PTC Creo
 - FIOEFD for CATIA V5
 - Also
 - Solid Edge

2016 NAFEMS Americas Conference

Summary

- Frontloading fits simulation into customer's design flow
- Efficient and engineer-suitable simulation process:
 - CAD-embedding allows automatic recognition of fluid regions, etc.
 - Fully automatic meshing of the complex geometry happens directly on the CAD model
 - Parametric CAD allows rapid geometry changes
- Cost-optimized and resource-efficient simulation workflow for Heat Exchangers:
 - Parametric study capability enables a fast characterization of the actual geometry
 - Porous media replaces complex sheet metal structure in full heat exchanger simulation

Thanks For Your Attention

